

LIFE TECHNICAL GUIDE - 01

LIFE-BR-TG01-3.2-English

Version 3.2 - Brazil - English

LIFE-BR-TG01-3.2-English	Revision: 5/17/2018
Applicability: Brazil Version: 3.2	
LIFE TECHNICAL GUIDE - 01 Calculation of the Biodiversity Impact Index and definition of minimum performance in Conservation Actions	Page 2 of 42

OBJECTIVE

To establish the minimum performance that each organization/producer must achieve in biodiversity and ecosystem services conservation actions, considering its size and impact.

APPLICATION

This document applies to organizations and producers who want to contribute to the conservation of biodiversity and ecosystem services and require a support tool to assess and monitor their impacts and their minimum performance for conservation.

For LIFE certified organizations in previous versions, this document will become effective from their first follow-up audit after its publication. For other organizations/producers, this document will automatically apply from the publication date.

APPROVAL

Document approved by the LIFE Institute Board of Directors.

Rights reserved by copyright law in Brazil and abroad according to the terms set forth in Brazilian and foreign legislations relevant to the subject. Any kind of reproduction of this document or part of its content requires the express written permission by the LIFE Institute.

> LIFE Institute Head Office Rua Victor Benato, 210 Bosque Zaninelli, UNILIVRE, Pilarzinho CEP: 82120-110 – Curitiba – PR Tel: +55 41 3253-7884 www.institutolife.org

LIFE-BR-TG01-3.2-English	Revision: 5/17/2018
Applicability: Brazil	Version: 3.2
LIFE TECHNICAL GUIDE - 01 Calculation of the Biodiversity Impact Index and definition of	Page 3 of 42
minimum performance in Conservation Actions	Fage 3 01 42

LIST OF ACRONYMS

ANA: Brazilian National Water Agency

Ao: Area of the organization/producer

AOE: Ecoregion original area

A_{RE}: Area with plant coverage remnant of the ecoregion

BCA: Performance in Biodiversity Conservation Actions

BCA_{min}: Minimum score to be reached by an organization/producer according to its estimated impact to biodiversity (BII) and size (gross income).

BII: Biodiversity Impact Index

boe: Barrel of oil equivalent

DAB_{CHR}: Demand-Availability Balance of the country's most critical hydrographic region

DAB_{OHR}: Demand-Availability Balance of the hydrographic region where the organization/producer

is located

EC: Total amount of energy consumed

EC_i: Energy consumption from source *i*

EG: Total amount of greenhouse gas emissions

EG_i: Amount of greenhouse gas emitted *i*

GHG: Greenhouse Gases

GR: Gross revenue

GWP: Global warming potential

IA: Impact value

ID_i: Impact of type *i* waste destination

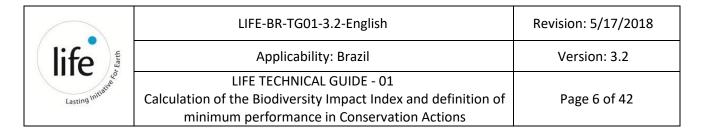
ID_{max}: Maximum impact observed among the types of waste destination

IE_i: Impact of energy source *i*

IE_{max}: Maximum impact observed among energy sources

II_i: Impact index of aspect *i*

IPCC: Intergovernmental Panel on Climate Change


- IPEA: Brazilian Institute for Applied Economic Research
- LIFE-BR-TG02: LIFE Technical Guide 02
- m³/s: Cubic meter per second
- m³: Cubic meter
- MCid: Brazilian Ministry of Cities
- **MME:** Brazilian Ministry of Mines and Energy
- MTC: Brazilian Ministry of Science and Technology
- NIS: National Interconnected System
- APBE: Action Plan for Biodiversity and Ecosystem Services
- PROBIO: Project for the Conservation and Sustainable Use of Brazilian Biological Diversity
- QSV_{GHG} : Quantity and severity value for the greenhouse gases aspect
- QV: Quantity value
- RV: Reference value
- SNIS: National Information System on Sanitation
- SV: Severity value
- tCO2e: Ton of CO2 equivalent
- **Tep (toe):** Ton of Oil Equivalent
- WG: Total amount of hazardous and non-hazardous waste generated
- WG_i: Waste generated of type *i*
- WU: Total amount of water used
- WWF: World Wide Fund for Nature

LIFE-BR-TG01-3.2-English	Revision: 5/17/2018
Applicability: Brazil	Version: 3.2
LIFE TECHNICAL GUIDE - 01	
Calculation of the Biodiversity Impact Index and definition of	Page 5 of 42
minimum performance in Conservation Actions	

TABLE OF CONTENTS

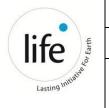
1. IN	TRODUCTION6			
2. BIO	ODIVERSITY IMPACT INDEX (BII)7			
2.1	CALCULATION OF THE BIODIVERSITY IMPACT INDEX (BII)8			
2.1.1	Quantity and Severity Values8			
2.1.2	Impact Values10			
2.1.3	Impact Indexes11			
2.1.4	Calculation of the Biodiversity Impact Index11			
2.2	DATA REQUIRED TO CALCULATE THE BII12			
2.2.1	Waste Generation12			
2.2.2	Water Consumption14			
2.2.3	Energy Consumption15			
2.2.4	Occupation of Areas16			
2.2.5	Emission of Greenhouse Gases16			
3. min	imum performance in actions for biodiversity conservation (bca _{min})			
4. Flov	w charts for calculating BII and bca _{min} 19			
5. REF	ERENCES			
6. GLC	5. GLOSSARY			
7. APP	7. APPENDIX			

1. INTRODUCTION

The Biodiversity Impact Index (BII) is an index developed by the LIFE Institute to define, compare and monitor, in a same scale, the impact of any organization/producer to biodiversity and ecosystem services, serving as an important management tool.

From the calculation of the BII, organizations and producers who wish to contribute to biodiversity may know and carry out the minimum performance in conservation actions that would be more appropriate to their size and impact.

This document introduces the concept and the manner of obtaining the Biodiversity Impact Index $(BII)^1$ and the minimum performance in biodiversity conservation actions (BCA_{min}) relating to every size and impact.


In addition to the use of these tools for public and private management, organizations and producers who achieve or exceed the minimum performance set, can request a third-party assessment so as to obtain an external recognition on their performance in favor of biodiversity. In this case, LIFE certification can be granted whenever an organization/producer:

- ✓ Achieves a performance in biodiversity conservation equal to or higher than the minimum set according to the methodology herein described. This positive performance must be demonstrated through an Action Plan for Biodiversity and Ecosystem Services (APBE), assessed and rated according to the document LIFE-BR-TG02.
- Meets the minimum indicators for biodiversity management described in LIFE Certification Standards (LIFE-BR-CS).

This document applies to industry, services, and the primary sector (farming areas: agriculture, forestry, animal production and aquaculture), whereas it does not apply to extractivism activities.

¹ Called BEIV (Biodiversity Estimated Impact Value) in the previous versions.

²⁰¹² LIFE Institute - All rights reserved. Only documents available on the LIFE Institute website can be considered as Official Versions in force.

2. BIODIVERSITY IMPACT INDEX (BII)

Aiming to establish a metric for scaling and comparing impacts to biodiversity, making it possible to define relative performance for conservation, the Biodiversity Impact Index (BII) was developed.

The 5 environmental aspects measured and assessed to calculate the BII were selected from the performance of public meetings for the definition and selection of relevant variables for the index, both for their relation to the main causes of global biodiversity loss² and for their data collection in organizations of any size and sector.

As a result of this analysis, we selected those aspects that had higher viability and ease of data collection and direct relationship with official data available: waste generation; water usage; energy consumption; footprint; greenhouse gas emission.

The BII is obtained through information relative to the quantity and severity relating to these 5 selected environmental aspects.

Information on the quantity of environmental aspects assessed, or "Quantity Value", refers to a direct relationship between the data of the organization/producer compared to an official data for this aspect in the country. This comparison generates a quantity value of impact for each environmental aspect referring to its contribution to the national total.

Information on severity, or "Severity Value", considers specific information for each environmental aspect, which allows to define their criticality: water availability in the region, potential for global warming from the gases emitted, impact of the energy sources used, health hazard, the disposal of waste generated by the activities, and national fragility of the ecoregion occupied by the enterprise. This information, although qualitative, is quantitatively represented by the severity values, which range between 0 and 1 and may be called severity factors.

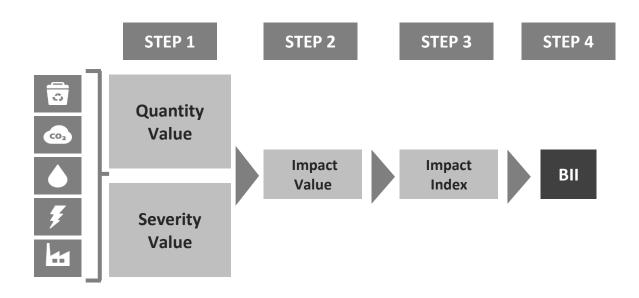
By multiplying the quantity values of impact by their severity factors, "Impact Values" (IV) are generated for each environmental aspect. For comparison purposes, these impact values are transformed into "Impact Indexes" (II), with the purpose of being mathematically distributed on the same scale, from zero to one thousand. This distribution has as reference the value of greatest impact known in the country for each environmental aspect.

The simple average of the Impact Indexes (II) for each one of the environmental aspects, results in the Biodiversity Impact Index (BII).

The following sections of the document present the steps for calculating the BII and the required Information from organizations and producers for its calculation.

² Destruction of habitats; climate changes; introduction of invasive exotic species; over-exploitation of species; pollution (*Millennium Ecosystem Assessment*, 2005).

²⁰¹² LIFE Institute - All rights reserved. Only documents available on the LIFE Institute website can be considered as Official Versions in force.



	LIFE-BR-TG01-3.2-English	Revision: 5/17/2018
Applicability: Brazil Version: 3.2		Version: 3.2
	LIFE TECHNICAL GUIDE - 01 Calculation of the Biodiversity Impact Index and definition of minimum performance in Conservation Actions	Page 8 of 42

2.1 CALCULATION OF THE BIODIVERSITY IMPACT INDEX (BII)

This section of the document introduces the steps and equations used to calculate the BII.

FIGURE 1. Steps for calculating the Biodiversity Impact Index (BII).

2.1.1 Quantity and Severity Values

Table 1 presents the equations used to calculate the quantity and severity values for each environmental aspect.

LIFE-BR-TG01-3.2-English	Revision: 5/17/2018
Applicability: Brazil Version: 3.2	
LIFE TECHNICAL GUIDE - 01 Calculation of the Biodiversity Impact Index and definition of minimum performance in Conservation Actions	

Table 1 - Equations of Quantity Values (QV) and Severity Values (SV) to calculate the BII for each environmental aspect

ENVIRONMENTAL ASPECT	QUANTITY	SEVERITY
Waste Generation	$QV_{WASTE} = \frac{WG}{RV_{WASTE}}$	$SV_{WASTE} = \frac{\sum_{i=1}^{n} (\%WG_i \times ID_i)}{ID_{max}}$
Water Consumption	$QV_{WATER} = \frac{WU}{RV_{WATER}}$	$SV_{WATER} = \frac{DAB_{OHR}}{DAB_{CHR}}$
Energy Consumption	$QV_{ENERGY} = \frac{EC}{RV_{ENERGY}}$	$SV_{ENERGY} = \frac{\sum_{i=1}^{n} (\%EC_i \times IE_i)}{IE_{max}}$
Occupation of Natural Areas	$QV_{AREA} = \frac{A_O}{A_E}$	$SV_{AREA} = 1 - \frac{A_{RE}}{A_{OE}}$
Emission of Greenhouse Gases	$QSV_{GHG} = \left(\frac{\sum_{i=1}^{n} (GE_i \times GWP_i)}{RV_{GHG}}\right)$	

Table 2 describes the terms that make up the equations presented in Table 1.

Table 2 – Terms used in the equations for the quantity and severit	y values

EQUATION	TERMS USED
	QV _{WASTE} = Quantity Value for Waste
01/	WG= Total quantity of hazardous and non-hazardous waste generated by the
QV _{WASTE}	organization/producer (t/year)
	RV _{WASTE} = National Reference Value for waste (t/year) according to Appendix.
	QV _{WATER} = Quantity Value for Water
<i>QV</i> _{WATER}	WU= Consumption of water used by the organization/producer (m ³ /year)
RV _{WATER} = Reference Value for water (m ³ /year), according to Appendix.	
	QV _{ENERGY} = Quantity Value for Energy
<i>QV</i> _{ENERGY}	EC= Total quantity of energy consumed by the organization/producer (toe/year)
	RV _{ENERGY} = Reference Value for Energy (toe/year), according to Appendix.

	LIFE-BR-TG01-3.2-English	Revision: 5/17/2018	
life	Applicability: Brazil	Version: 3.2	
Lasting Inited	 LIFE TECHNICAL GUIDE - 01 Calculation of the Biodiversity Impact Index and definition of minimum performance in Conservation Actions 	Page 10 of 42	
EQUATION	TERMS USED		
	QV _{AREA} = Quantity Value for Area		
01/	A ₀ = Area of the organization/producer (hectares)		
QV _{AREA}	A _{OE} = Original area of the ecoregion in which the organiza (hectares), according to Appendix	tion/producer is located	
	QSV _{GHG} = Quantity and Severity Value for Greenhouse Gases		
QSV _{GHG}	GE_i = Quantity of greenhouse gas emissions <i>i</i> emitted by the c (tCO ₂ e/year)	organization/producer	
QJV GHG	GWP _i = Global warming potential of greenhouse gas <i>i</i> according	ng to Annendix	
	RV_{GHG} = Reference value for greenhouse gases (tCO ₂ e/year) a		
	SV _{WASTE} = Severity Value for Waste.		
	WG _i = Percentage of waste generation with type " <i>i</i> " destination.		
SV _{WASTE}	ID_i = Impact of destination " <i>i</i> " (ID) listed in the Appendix.		
	ID _{max} = Maximum impact observed between "i" types of desti	nation.	
	SV _{WATER} = Severity Value for the water aspect.		
	DAB _{CHR} = Demand-Availability Balance of country's most critical hydrographic region		
SV _{WATER}	listed in the Appendix.		
	DAB _{OHR} = Demand-Availability Balance of the hydrograp	hic region where the	
	organization/producer is located, listed in the Appendix.		
	SV _{ENERGY} = Severity value for the energy aspect.		
	EC _i = Percentage of the energy source type <i>i</i> consumed by the	organization/producer.	
SV _{ENERGY}	IE _i = Impact of the energy source <i>i</i> consumed by the organiza	tion/producer, according	
	to the Appendix.		
	IE _{max} = Maximum impact observed between energy sources a	ccording to Appendix.	
	SV_{AREA} = Severity value for the occupation aspect of natural ar		
	A_{OE} = Original area of the ecoregion in which the organiza	tion/producer is located	
SV _{AREA}	(hectares), according to Appendix.		
	A_{RE} = Area of remaining vegetation in the ecor	egion in which the	
	organization/property is located.		

2.1.2 Impact Values

In Table 3, the equations used to obtain the Impact Value (VI_i) of each aspect *i* are listed.

	LIFE-BR-TG01-3.2-English	Revision: 5/17/2018
life ut	Applicability: Brazil	Version: 3.2
	LIFE TECHNICAL GUIDE - 01	
Lasting Initiati	Calculation of the Biodiversity Impact Index and definition of	Page 11 of 42
	minimum performance in Conservation Actions	

Table 3 - Calculation of the impact value for each environmental aspect

ENVIRONMENTAL ASPECT	IMPACT VALUE OF THE ASPECT	
Waste Generation	$IV_i = QV_i \times SV_i$	
Water Consumption		
Energy Consumption		
Occupation of Natural Areas		
Emission of Greenhouse Gases	$IV_{GHG} = QSV_{GHG}$	

2.1.3 Impact Indexes

The Impact Values (IV) are transformed into Impact Indexes (II), which allow the representation of the impact of each environmental aspect on the same scale, dimensionless, ranging from zero to 1,000. The Impact Index (II) is calculated individually for each environmental aspect by the following equation:

$$II_i = \left(1 - \frac{1}{1 + a_i IV_i}\right) \times 1000$$

Wherein:

// = Impact Index of aspect i

 a_i = Correction factor³ of aspect *i*, which allows *II* to range between 0 and 1,000

IV = Impact Value of aspect *i*

2.1.4 Calculation of the Biodiversity Impact Index

The Biodiversity Impact Index is obtained by the simple arithmetic average of the Impact Indexes (II) of the five environmental aspects assessed:

$$BBI = \frac{||_{WATER} + ||_{ENERGY} + ||_{GHG} + ||_{WASTE} + ||_{AREA}}{5}$$

³ See details in the Appendix.

²⁰¹² LIFE Institute - All rights reserved. Only documents available on the LIFE Institute website can be considered as Official Versions in force.

LIFE-BR-TG01-3.2-English	Revision: 5/17/2018
Applicability: Brazil	Version: 3.2
LIFE TECHNICAL GUIDE - 01 Calculation of the Biodiversity Impact Index and definition of minimum performance in Conservation Actions	Page 12 of 42

The information herein presented is only a description of the calculations used. Achieving the BII is facilitated through the use of an automated calculation tool provided by LIFE Institute, upon request.

Information on the reference values used in Brazil, herein mentioned, as well as for unit conversion, can be found in the Appendix **(Reference Information to calculate the BII in Brazil)**.

2.2 DATA REQUIRED TO CALCULATE THE BII

This document section presents the data from the organization/producer that need to be informed to calculate the BII.

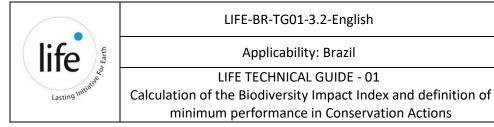
Prior to the calculation, it is necessary to define clearly and objectively which unit is being assessed. This information will be used as reference for the entire assessment process, considering the scope rule for LIFE Certification.

For situations not provided for in this document or in the support tools mentioned therein, the organization/producer must present its own estimate to the auditor, justifying the data presented during the audit. In case of impossibility of assessing one or more cultures or activities in particular, the auditor may temporarily relieve the organization/producer from inserting the environmental aspect in question into the calculation of the BII, recording on the audit report the need for effort and follow-up of tools and methodologies over time to collect these data.

2.2.1 Waste Generation

- a) Inform the total amount of waste generated by the organization/producer in tons/year, adding all the following situations:
 - i) Any waste, whether treated or not, forwarded to third parties, whether through donation or sale, for treatment, storage or final elimination

- ii) Waste send to landfills, own or third party
- iii) Waste stored, internally or by third parties
- iv) Household and production waste generated within the property
- v) Other wastes not receiving internal treatment in the organization/property


The data reported must refer to the total waste generated in all processes - direct and indirect, productive, administrative and from maintenance - as long as performed on the physical site which is being assessed.

- b) There is no need to inform wastes destined internally for:
 - i) Production of biogas;
 - ii) Incineration;
 - iii) Co-processing;
 - iv) Reuse;
 - v) Recycling.

All consumption of water, energy and use of area relating to these processes must be informed on the other environmental aspects to calculate the impact of the organization/property.

The auditor may request and assess information on wastes eventually not included in the calculation for the purposes of checking compliance with Principles 2, 5 and 8 of LIFE Certification Standards.

- c) Inform health hazards of wastes generated in:
 - i) Hazardous Waste
 - ii) Non-hazardous waste
- d) Inform the destination of the waste informed in item (a) in:
 - i) Reuse
 - ii) Recycling
 - iii) Composting
 - iv) Landfarming
 - v) Co-processing

Revision: 5/17/2018

Version: 3.2

- vi) Biogas
- vii) Storage
- viii) Incineration
- ix) Landfill with biogas utilization
- x) Landfill

When the destination is different from these categories, the organization/producer may select that with the characteristics closest to the informed destination. In such cases, the auditor must mention and justify this choice in the audit report.

Wastes from agricultural production, even if destined to industry, must be recorded as primary production waste and classified according to the type of destination (e.g.: recycling, co-processing, etc.). If the industry receiving this waste is undergoing assesses by LIFE methodology, this material, in this unit assessed, must be considered as an input and not as waste.

Industrial waste used in agriculture must be informed as "landfarming", to calculate the impact of the waste from the plant assessed.

If the value presented is an estimate, due to the absence of previous records, the auditor must assess the coherence of the figures provided and record on the audit report the need to begin periodic controls.

2.2.2 Water Consumption

- a) Inform the volume of consumptive water use⁴ of all processes, direct and indirect, carried out in the physical unit assessed.
 - i) **Primary sector:** inform the sum of the values for "green footprint" (water from precipitation stored in plants, evaporated or transpired) and for "blue footprint" (surface or underground water incorporated into the process).
 - Agricultural crops: water consumption estimates for each crop can be obtained through online tool from the Water Footprint Network initiative⁵.
 - Animal production: water consumption estimates can be obtained by extrapolation of the individual consumption per animal/head, including watering, washing, etc.

⁴ Non-consumptive uses do not need to be reported, e.g.: aquaculture, hydroelectricity, water for dilution and/or purification of effluents.

⁵ The Water Footprint Assessment Tool Available at: <u>http://waterfootprint.org/en/resources/interactive-tools/water-footprint-assessment-tool/</u>

²⁰¹² LIFE Institute - All rights reserved. Only documents available on the LIFE Institute website can be considered as Official Versions in force.

LIFE-BR-TG01-3.2-English	Revision: 5/17/2018
Applicability: Brazil	Version: 3.2
LIFE TECHNICAL GUIDE - 01 Calculation of the Biodiversity Impact Index and definition of minimum performance in Conservation Actions	Page 15 of 42

- Forestry: water consumption estimates for the *Pinus* and *Eucalyptus* genera can be obtained through the LIFE Key calculation tool⁶. In these cases, it is necessary to inform the area planted with each gender and the location of plantations.
- ii) **Secondary sector:** the organization must inform only the consumptive use of blue water (water collected less the water discarded, either as effluent or process losses).
- iii) **Tertiary sector:** the organization must inform only the consumption of blue water. The consumption of blue water can be informed through consumption records, being possible to discount the return volume to the basin only when this information is available.

b) Inform the hydrographic region where the assessed enterprise is located.

The organization can define its hydrographic region more accuracy by entering the location data on the map provided by the LIFE Key tool.

2.2.3 Energy Consumption

a) Inform the total amount of energy consumed (own or acquired by the business unit). Inform the distribution of consumption by sources used:

- i) Energy from the National Interconnected System (NIS)
- ii) Biofuels (ethanol)
- iii) Biofuels (Oils and Biodiesel)
- iv) Biogas
- v) Biomass (wood)
- vi) Biomass (residual)
- vii) Mineral Coal
- viii) Sea Energy
- ix) Wind
- x) Natural Gas
- xi) Geothermal

⁶ Estimates obtained through the LIFE/IPEF project of Forestry water consumption.

²⁰¹² LIFE Institute - All rights reserved. Only documents available on the LIFE Institute website can be considered as Official Versions in force.

	LIFE-BR-TG01-3.2-English	Revision: 5/17/2018
r Earth	Applicability: Brazil	Version: 3.2
the For	LIFE TECHNICAL GUIDE - 01	
S-	Calculation of the Biodiversity Impact Index and definition of	Page 16 of 42
	minimum performance in Conservation Actions	

- xii) Hydroelectricity
- xiii) Non-renewable residual

xiv) Nuclear

xv) Oil and derived

xvi) Solar

2.2.4 Occupation of Areas

a) Inform the *area* (hectares), distributed according to occupancy classes in accordance with MSA (Mean Species Abundance⁷).

b) Inform the ecoregion in which the organization/producer is located. The organization can define its ecoregion more accurately by entering the location data on the map provided by the LIFE Key tool.

c) In the case of agricultural properties bound to leasing contracts or others, inform only the areas relating to the contract⁸.

d) External areas to the assessed properties, bound only to conservation actions, must not be accounted for to calculate the BII.

2.2.5 Emission of Greenhouse Gases

a) The total amount of emissions of all greenhouse gases;

The organization/producer must inform the Total Emissions of each one of the Greenhouse Gases ($tCO_2e/year$), considering the Scopes 1+2+3 of the GHG Protocol tool.⁹. For the year zero of certification, information pertaining only to Scopes 1+2 will be accepted. More detailed

⁷ Mean Species Abundance (MSA) is an indicator that describes the changes in the environment in relation to the original ecosystem. The MSA is an indicator of naturalness or intactability of biodiversity, defined as mean abundance of original species in the area in question in relation to their abundance in undisturbed ecosystems. An area with an MSA of 100% (1.0) means having a biodiversity similar to the natural situation. An MSA of 0% (0.0) means a completely destroyed ecosystem without remaining original species. The relationship of the MSA classes for occupation of area are in the Appendix. For more details: http://www.globio.info/background-msa

⁸ In these cases, legal environmental compliance is mandatory for the entire area of the property, even if the contract is bound to a partial area. This mandatory legal compliance must be provided for in contract.

⁹ Cross-sectoral GHG Protocol Tool. Available at <u>http://twixar.me/sVP</u>

²⁰¹² LIFE Institute - All rights reserved. Only documents available on the LIFE Institute website can be considered as Official Versions in force.

	LIFE-BR-TG01-3.2-English	Revision: 5/17/2018
life	Applicability: Brazil	Version: 3.2
Line to	LIFE TECHNICAL GUIDE - 01	
Lasting Initiativ	Calculation of the Biodiversity Impact Index and definition of	Page 17 of 42
	minimum performance in Conservation Actions	

information on the scopes of the GHG Protocol is listed in the Appendix and in the document LIFE-BR-RD003.

The GHG Protocol also has a calculation tool specific for the primary sector¹⁰. Other tools for the inventory of emissions will be accepted, as long as also using the IPCC (Intergovernmental Panel on Climate Change) guidelines¹¹.

The BII assesses the negative impacts to biodiversity for all environmental aspects considered. Thus, for this step, only greenhouse gas emissions will be accounted for, and not carbon sequestration. Carbon fixation projects, validated by a third party¹², may score as indirect action for biodiversity conservation (strategic line "G4" - LIFE-BR-TG02).

¹⁰ GHG Protocol Agricultural Guidelines. Available at <u>http://twixar.me/cVP</u>

¹¹ Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Available at: <u>http://twixar.me/xVP</u>

¹²Validation by recognized initiatives relative to the topic or by consulting works based in detailed, justified and recognized methodologies.

²⁰¹² LIFE Institute - All rights reserved. Only documents available on the LIFE Institute website can be considered as Official Versions in force.

3. MINIMUM PERFORMANCE IN ACTIONS FOR BIODIVERSITY CONSERVATION (BCA_{MIN})

The minimum performance in biodiversity conservation for the LIFE Certification is determined by two factors: the Biodiversity Impact Index (BII) and the company's Gross Revenue (GR).

The BCA_{min} is obtained through the following equation:

 $BCA_{min} = 50 \times BII^{x} \times GR^{y}$

Wherein:

BII: Biodiversity Impact Index

GR: Gross Revenue

x, y: calibration factors of BCA_{min}

Considering the assessment and scoring of the Action Plan for Biodiversity and Ecosystem Services Action Plan (APBE) of the organization/producer (BCA_{achieved}¹³), the BCA_{to be achieved} is calculated:

 $BCA_{to be achieved} = BCA_{min} - BCA_{achieved}$

¹³ LIFE-BR-TG02

²⁰¹² LIFE Institute - All rights reserved. Only documents available on the LIFE Institute website can be considered as Official Versions in force.

	LIFE-BR-TG01-3.2-English	Revision: 5/17/2018
life	Applicability: Brazil	Version: 3.2
Lasting Initiative	LIFE TECHNICAL GUIDE - 01 Calculation of the Biodiversity Impact Index and definition of	Daga 10 of 42
Lasting "	minimum performance in Conservation Actions	Page 19 of 42

4. FLOW CHARTS FOR CALCULATING BII AND BCAMIN

LIFE-BR-TG01-3.2-English	Revision: 5/17/2018
Applicability: Brazil	Version: 3.2
LIFE TECHNICAL GUIDE - 01	
Calculation of the Biodiversity Impact Index and definition of minimum performance in Conservation Actions	Page 20 of 42

5. REFERENCES

AGÊNCIA NACIONAL DE ÁGUAS. **Conjuntura dos Recursos Hídricos no Brasil.** Brasília, 2013. Available at: <<u>http://arquivos.ana.gov.br/institucional/spr/conjuntura/webSite_relatorioConjuntura/projeto/index.html</u> >. Access on: 1 Aug. 2014.

GHG PROTOCOL. **GHG Protocol Diretrizes Agropecuárias**. Available at <<u>http://www.ghgprotocol.org/Agriculture-Guidance/Vis%C3%A3o-Geral%3A-Projeto-Brasil-</u><u>Agropecu%C3%A1ria</u>> Access on: 15 Oct. 2015.

GLOBIO. **GLOBIO3: A Framework to Investigate Options for Reducing Global Terrestrial Biodiversity Loss.** Available at <<u>http://www.globio.info/downloads/14/fulltext%20%28artikel%20GLOBIO%29.pdf</u>>. Access on: 15 Oct. 2015.

INSTITUTO DE PESQUISA ECONÔMICA APLICADA. **Diagnóstico dos Resíduos Sólidos Industriais.** Relatório de Pesquisa. 2012. Available at: <<u>http://www.ipea.gov.br/portal/index.php?option=com_content&view=article&id=15621&catid=222&Ite</u> <u>mid=7</u>>. Access on: 4 July 2014.

MINISTÉRIO DAS CIDADES. **Sistema Nacional de Informações sobre o Saneamento (SNIS).** 2014. Available at: <<u>http://www.snis.gov.br/PaginaCarrega.php?EWRErterterTERTer=104</u>>. Access on: 17 July 2014.

MINISTÉRIO DE CIÊNCIA, TECNOLOGIA E INOVAÇÃO. **Segunda Comunicação Nacional do Brasil à Convenção** – Quadro das Nações Unidas sobre Mudança Climática - Volume 1. Brasília, 2010. 280 p. Available at: <<u>http://www.mct.gov.br/index.php/content/view/326988.html</u>>. Access on: 22 July 2014.

MINISTÉRIO DE MINAS E ENERGIA. **Balanço Energético Nacional 2013**: Ano base 2012. Brasília, 2013. 288 p. Available at: <<u>https://ben.epe.gov.br/BENRelatorioFinal2012.aspx</u>>. Access on: 3 Aug. 2014.

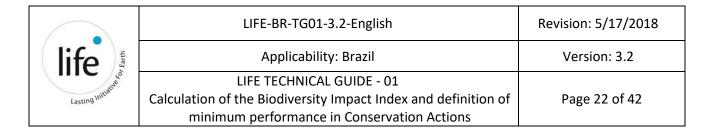
MINISTÉRIO DO MEIO AMBIENTE (MMA). **Mapas de Cobertura Vegetal dos Biomas Brasileiros.** PROBIO 2005. Escala 1:250.000. Available at: <<u>http://mapas.mma.gov.br/mapas/aplic/probio/datadownload.htm</u>>. Access on: 1 Aug. 2014.

OPERADOR NACIONAL DO SISTEMA ELÉTRICO. **Sistema Interligado Nacional (SIN).** Available at: <<u>http://www.ons.org.br/conheca_sistema/resumo_operacao.aspx</u>>. 2014. Access on: 7 July 2014.

PROGRAMA BRASILEIRO GHG PROTOCOL. **Ferramenta de Cálculo**. **2013.** Available at: <<u>www.fgv.br/ces/ghg/</u>>. Access on: 29 July 2014.

WATER FOOTPRINT NETWORK. **The Water Footprint Assessment Manual** Available at: <<u>http://waterfootprint.org/media/downloads/TheWaterFootprintAssessmentManual_2.pdf</u>>. Access on: 15 Oct. 2015.

WORLD RESOURCES INSTITUTE.Millennium Ecosystem Assessment.Ecosystems and Human Well-being:BiodiversitySynthesis.Washington,DC,2005.141p.Availableat:<http://www.millenniumassessment.org/documents/document.356.aspx.pdf>.Access on: 2 Aug. 2014.


WORLD WIDE FUND FOR NATURE (WWF). **Wildfinder**. 2014. Escala indeterminável. Available at: <<u>http://www.worldwildlife.org/science/wildfinder/</u>>. Access on: 15 July 2014.

	LIFE-BR-TG01-3.2-English	Revision: 5/17/2018
cartn	Applicability: Brazil	Version: 3.2
	LIFE TECHNICAL GUIDE - 01	
	Calculation of the Biodiversity Impact Index and definition of	Page 21 of 42
	minimum performance in Conservation Actions	

6. GLOSSARY

The terms used in this document are available in the LIFE Glossary.

7. APPENDIX

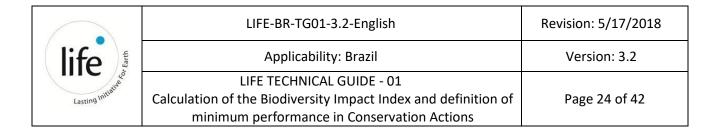
1. Factor a_i

Factor a_i is the Correction Factor of distribution scale of the Impact Indexes. The correction factors are determined nationally, aimed at establishing a distribution scale of the impacts from the higher values for each individual impact (productive unit) in the country. In each country, the factor is set so that the maximum value observed for the environmental aspect is equivalent to the value of 950 in a scale from 0 to 1,000.

The Correction Factors presently used in Brazil are: (i) Waste: 7,345; (ii) Water: 6,615; (iii) Energy: 2,358; (iv) Area: 7,923; (v) Greenhouse Gases: 7,995.

2. Calibration factors of BCA_{min}

The factors of equation BCA_{min} are the ones that adjust the country's conservation performance according to the current practices of organizations, so that all enterprises seek to achieve the best practices. Current practices of organizations in conservation are researched and assessed by local experts.


Calibration factors of BCA_{min} in Brazil: x) 0,42; y) 0,29.

3. Reference Values (RV) for environmental aspects

The Reference Value (RV) represents the whole, in terms of quantity, national impact in one year.

ASPECT	REFERENCE VALUE (RV)	DOCUMENT	YEAR	BASE YEAR	INFORMATION USED
		Diagnosis of Urban Solid Waste	2012	2008	Estimated generation of total urban solid waste in
WASTE	188,163,813 t/year	Diagnosis of Solid Waste Management in Brazil	2016	2014/2012	the country, a result of municipal inventories.
GASES	2,192,601,000 tCO₂e/year	Second National Communication of Brazil to the United Nations Framework Convention on Climate Change	2010	2005	Total greenhouse gas emissions in the country in CO ₂ e converted through the GWP metric.
ENERGY	305,589,000 toe/year	National Energy Balance	2015	2014	Domestic supply of domestic energy, value that includes both end- use energy and conversions that take place in processing centers, such as: refineries, power generation centers, etc.
	Systematic Survey of Agricultural Production Water Footprint Assessmen		2016	Demand for water that corresponds to the flow of withdrawal, that is, water collected intended	
WATER	617,536,607,520 m³/year	Tool Conjuncture of Water Resources in Brazil	2015	2013/2014	water collected intended to various consumption uses (blue water), plus water evapotranspirated during the agricultural production process (green water).

4. References for the calculation of the Severity Valor

a) Impact of Destination (ID) of non-hazardous waste generated by the organization

ASPECT	Reduction of the volume of waste to be disposed in a landfill	Reduction of the potential for contamination of the waste	Generation of new products	Energy reuse	Reduction of the consumption of natural resources	Generation of other waste		Generation of liquid effluents / Possibly contaminated water bodies	Generation	Sum of the impact	Process score	Severity Index
Destination		Posi	tive Im	pact		Negative Impact						
Reuse	0	0	0	0	0	0	0	0	0	0	1	0
Recycling	0	0	0	0	0	1	0	1	0	2	2	4
Composting	0	0	0	1	0	0	0	1	0	2	2	4
Landfarming	0	0	0	0	0	0	0	1	1	2	4	8
Co-processing	0	0	0	0	0	1	0	1	1	3	3	9
Biogas	0	0	0	1	0	0	1	1	1	4	3	12
Storage	0	0	1	1	-	0	0	1	0	3	4	12
Incineration	0	0	1	0	1	1	-	-	1	4	4	16
Landfill with biogas utilization	1	1	0	0	1	1	1	1	1	7	5	35
Landfill	1	1	1	1	1	1	1	1	1	9	5	45

Positive Impact: 0 - Presence of positive impact / 1 - Absence of positive impact. Negative Impact: 0 - Absence of negative impact / 1 - Presence of negative impact Max ID: 45

Revision: 5/17/2018

Version: 3.2

Applicability: Brazil LIFE TECHNICAL GUIDE - 01

Page 25 of 42

Calculation of the Biodiversity Impact Index and definition of minimum performance in Conservation Actions

IS

b) Impact of Destination (ID) of hazardous waste generated by the organization

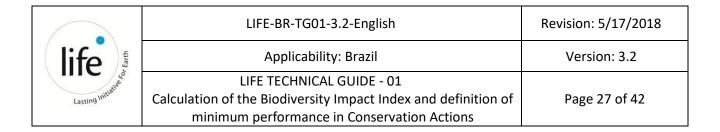
ASPECT	Reduction of the volume of waste to be disposed in a landfill	Reduction of the po contamination of t	Generation of new products	Energy reuse	Reduction of the consumption of natural resources	Generation of other waste	Area degradation	Generation of liquid effluents / Possibly contaminated water bodies	Generation of pollutant gases	Flammability	Corrosivity	Reactivity	Toxicity	Pathogenicity	Sum of the impact	Process score	Severity Index
Destination		POS	itive lı	npact	1	N	egativ	ve Imp	act								
Reuse	0	0	0	0	0	0	0	0	0	10	10	10	10	10	50	0	50
Recycling	0	0	0	0	0	10	0	10	0	10	10	10	10	10	70	1	70
Landfarming	0	0	0	0	0	0	0	10	10	10	10	10	10	10	70	1	70
Co-processing	0	0	0	0	0	10	0	10	10	10	10	10	10	10	80	1	80
Biogas	0	0	0	10	0	0	10	10	10	10	10	10	10	10	90	2	180
Storage	0	0	10	10	-	0	0	10	0	10	10	10	10	10	80	3	240
Incineration	0	0	10	0	10	10	-	-	10	10	10	10	10	10	90	4	360
Landfill with biogas utilization	10	10	0	0	10	10	10	10	10	10	10	10	10	10	120	5	600
	10	10	0	v		-											

Positive Impact: 0 - Presence of positive impact / 10 - Absence of positive impact. Negative Impact: 0 - Absence of negative impact / 10 - Presence of negative impact Max ID: 700

c) Demand-Availability Balance (DAB) by Hydrographic Region

Hydrographic Region	Water availability in the region (m³/s)	Water demand in the region (m ³ /s)	Demand-Availability Balance (DAB)
Amazon Hydrographic Region	73,748	78.8	0.00107
Tocantins-Araguaia Hydrographic Region	5,447	135.6	0.02489
Paraguay Hydrographic Region	782	30	0.03836
Western Northeast Atlantic Hydrographic Region	320	23.7	0.07406
Paraná Hydrographic Region	5,956	736	0.12357
Parnaíba Hydrographic Region	379	50.9	0.13430
São Francisco Hydrographic Region	1,886	278.8	0.14783
Southeast Atlantic Hydrographic Region	1,145	213.7	0.18664
Uruguay Hydrographic Region	565	155.4	0.27504
East Atlantic Hydrographic Region	305	112.3	0.36820
South Atlantic Hydrographic Region	647	295.4	0.45657
Eastern Northeast Atlantic Hydrographic Region	91	262	2.87912

	LIFE-BR-TG01-3.2-English	Revision: 5/17/2018
Earth	Applicability: Brazil	Version: 3.2
nitiative	LIFE TECHNICAL GUIDE - 01	
nitiat	Calculation of the Biodiversity Impact Index and definition of	Page 26 of 42
	minimum performance in Conservation Actions	


d) Severity Value for Water

Hydrographic Region	VSa = BDD(RHO)/BDD(RHC)
Amazon Hydrographic Region	0.000371121
Tocantins-Araguaia Hydrographic Region	0.008646541
Paraguay Hydrographic Region	0.013324613
Western Northeast Atlantic Hydrographic Region	0.025723998
Paraná Hydrographic Region	0.042920347
Parnaíba Hydrographic Region	0.046646458
São Francisco Hydrographic Region	0.051344175
Southeast Atlantic Hydrographic Region	0.064824494
Uruguay Hydrographic Region	0.095530636
East Atlantic Hydrographic Region	0.127885121
South Atlantic Hydrographic Region	0.158579232
Eastern Northeast Atlantic Hydrographic Region	1.00000000

e) Participation by energy source in the National Interconnected System

Energy source	Participation in the total electricity production in Brazil
Biodiesel	0.00%
Biogas	0.00%
Biomass (wood)	0.00%
Biomass (residual)	7.52%
Mineral Coal	3.30%
Sea Energy	0.00%
Wind	2.06%
Ethanol	0.00%
Natural Gas	13.39%
Geothermal	0.00%
Hydroelectricity	64.06%
Non-renewable residual	0.00%
Nuclear	2.57%
Petroleum	7.11%
Solar	0.01%

Source: 2013 National Energy Balance - Ministry of Mines and Energy

f) Impact of energy sources used by the organization (IE)

inpact of energy sources	IMPACT												
COMPONENT	WAT	ER	A	IR				SOIL			В	ΙΟΤΑ	
ENVIRONMENTAL FACTOR	Water use and / or consumption	Generation of effluents	Emissions of greenhouse gases	Atmospheric emissions	Noise emissions		Movement of soil		Land use	Generation of solid waste	Occupation of areas	Generation of effluents and solid residues; atmospheric emissions	GY SOURCE (IE)
POTENTIAL IMPACT	Change in water availability	Change in water quality	Contribution to increased climate warming	Change in air quality	Change in noise levels	Intensification of silting processes	Intensification of erosive processes	Generation of induced earthquakes	Changes in landscape and land use	Change in soil quality	Habitat change and / or reduction	Structural and / or functional change of ecosystems	IMPACT OF ENERGY SOURCE (IE)
ENERGY SOURCE													
Biofuels (Ethanol)	9	5	2	5	1	2	5	n.s	9	1	5	3	47
Biofuel (Oils and Biodiesel)	9	5	2	5	1	2	5	n.s	5	5	5	3	47
Biogas	2	1	3	3	1	n.s	n.s	n.s	2	1	n.s	n.s	13
Biomass (wood)	3	1	9	7	3	2	2	n.s	7	3	9	3	49
Biomass (residual)	1	1	3	5	1	1	1	n.s	5	3	1	3	25
Mineral Coal	9	8	10	10	7	9	9	9	10	10	10	9	110
Sea Energy	n.s	n.s	n.s	n.s	2	n.s	n.s	n.s	1	n.s	5	1	9
Wind	n.s	n.s	n.s	n.s	6	n.s	1	n.s	9	n.s	2	n.s	18
Natural Gas	9	7	9	7	7	4	4	9	9	5	8	6	84
Geothermal	1	6	1	2	4	1	1	9	9	5	5	1	45
Hydroelectricity	9	1	1	3	3	10	9	2	10	1	9	1	59
Non-renewable residual	1	5	10	7	5	1	1	n.s	5	n.s	2	1	38
Nuclear	10	6	1	3	7	9	9	9	10	10	9	5	88
Petroleum and byproducts	9	8	10	10	7	4	4	9	9	8	4	6	88
Solar	5	1	1	n.s	1	1	1	n.s	6	6	5	5	32

n.s = not significant

 IE_{max} = 110

LIFE-BR-TG01-3.2-English	Revision: 5/17/2018
Applicability: Brazil	Version: 3.2
LIFE TECHNICAL GUIDE - 01	
Calculation of the Biodiversity Impact Index and definition of	Page 28 of 42
minimum performance in Conservation Actions	

g) Mean Species Abundance (MSA)

MSA	Classes of Soil Cover
1	Forests or other natural preserved or naturally without coverage ecosystems
0.7	Natural or little explored ecosystems
0.5	Altered natural ecosystems; areas in recovery, production in biodiverse systems, squares/native gardens
0.3	Low impact crops
0.2	Forest plantations
0.1	Intensive farming and livestock, artificial pasture, artificial reservoirs and squares/conventional gardens
0.05	Built-out areas

h) Greenhouse Gases and their global warming potential (GWP) for a period of 100 years

Gas	Chemical formula	GWP
Carbon Dioxide	CO ₂	1
Methane	CH_4	21
Nitrous Oxide	N ₂ O	310
Hydrofluorocarbon (HFC)		
HFC-125	C_2HF_5	2,800
HFC-134a	$C_2H_2F_4$ (CH_2FCF_3)	1,300
HFC-143a	$C_2H_3F_3$ (CF_3CH_3)	3,800
HFC-152a	C ₂ H ₄ F ₂ (CH ₃ CHF ₂)	140
Perfluorocarbons (PFC)		
Perfluoromethane (tetrafluoroethane)	CF_4	6,500
Perfluorethane (Hexafluoroethane)	C_2F_6	9,200
Sulfur hexafluoride	SF ₆	23,900

Adapted from: Second National Communication of Brazil to the United Nations Framework Convention on Climate Change - Volume 1.

Da == 20 = f 42

Version: 3.2

Calculation of the Biodiversity Impact Index and definition of minimum performance in Conservation Actions

i) Ecoregions of Brazil

a) Original and remnant areas of terrestrial ecoregions of Brazil

Ecoregion	Original area (ha)	Remaining area (ha)
Campinaranas of Alto Rio Negro	8,097,018.53	154,880.00
Forests of the Interior of Paraná/Paranaíba	44,471,197.84	3,655,168.00
Savannas of the Guyanas	7,810,248.84	650,496.00
Mangroves of Maranhão	1,420,390.15	154,880.00
Coastal forest of Bahia	11,957,910.29	1,424,896.00
Araucaria Forests	26,459,380.91	3,221,504.00
Floodplains of Gurupá	994,016.56	123,904.00
Forests of the Interior of Bahia	25,607,062.55	3,779,072.00
Negro/Branco Interfluve	4,880,148.15	805,376.00
Dry forests of Mato Grosso	42,887,310.92	8,673,280.00
Humid Chaco	152,373.39	30,976.00
Rupestrian Fields	2,975,353.68	619,520.00
Rio Piranhas Mangroves/Ilha Grande Mangroves/São Francisco River Mangroves	952,021.76	216,832.00
Dry Forest of Chiquitano	7,068,488.15	1,672,704.00
Northeastern Swamps	483,563.86	123,904.00
Coastal Forests of Pernambuco	1,797,612.24	495,616.00
Coastal Forests of Serra do Mar	12,557,215.14	3,655,168.00
Atlantic Coast Mudflats	924,553.84	278,784.00
Japurá/Solimões-Negro Interfluve	23,572,308.81	7,960,832.00
Forests of the Interior of Pernambuco	2,291,852.63	774,400.00
Southern Fields	23,341,787.81	8,301,568.00
Tocantins-Araguaia/Maranhão Interfluve	19,371,014.33	7,155,456.00
Forests of Caqueta	1,284,699.38	650,496.00
Floodplains of Marajó	8,285,075.30	4,212,736.00
Savannah	205,679,296.90	104,853,760.00
Caatinga	75,459,926.65	43,056,640.00
Tepuis	516,151.97	309,760.00
Forests of Babaçu do Maranhão	14,336,095.92	8,735,232.00
Floodplains of Monte Alegre	6,744,059.64	4,212,736.00
Xingu/Tocantins-Araguaia Interfluve	26,842,076.62	16,850,944.00
Dry Forests of the Northeast	12,119,509.64	8,053,760.00
Solimões/Japurá Interfluve	3,645,373.67	2,447,104.00
Madeira/Tapajós Interfluve	67,838,902.32	47,764,992.00
Lowland Forests of the Guyanas	8,563,652.97	6,288,128.00

	LIFE-BR-TG01-3.2-E	Revision: 5/17/2018		
life	Applicability: Br	Version: 3.2		
Lasting Initiative	LIFE TECHNICAL GUI Calculation of the Biodiversity Impa minimum performance in Co	Page 30 of 42		
	Ecoregion	Original area (ha)	Remaining area (ha)	
Altitude Forests	of the Guyanas	2,730,212.64	2,013,440.00	
Purus/Madeira II	Purus/Madeira Interfluve		13,257,728.00	
Uamatá/Trombe	tas Interfluve	47,197,632.22	36,148,992.00	
Coastal Mudflats	of the Northeast	979,821.72	774,400.00	
Floodplains of Iq	uitos	3,198,498.28	2,571,008.00	
Pantanal		15,163,835.40	12,297,472.00	
Floodplains of Purus		14,604,515.88	12,421,376.00	
Tapajós/Xingu Interfluve		34,130,683.92	29,365,248.00	
Forests of the Guyanas		Guyanas 6,857,215.98		
Amazon Southwest		32,578,735.36	29,272,320.00	
Juruá/Purus Inte	rfluve	24,538,386.00	23,510,784.00	

Source: LIFE Institute/Federal University of Goiás, 2014. Adapted from: MMA (2005); WWF (2014).

b) Priority Ranking of Marine Ecoregions in Brazil

Ranking/Priority	Marine Ecoregion
1	Amazon
2	Eastern Brazil
3	Southeastern Brazil
4	Northeastern Brazil
5	Rio Grande
6	Islands of São Pedro and São Paulo
7	Fernando de Naronha and Atol das Rocas
8	Islands of Trindade and Martim Vaz

The priority of the marine ecoregions in Brazil combines both the borders of the ecoregions, according to the Marine Ecoregions of the World (2007), the degree of priority and biological importance defined by the Conservation Overview of Marine and Coastal Ecosystems (MMA, 2010) and the extension of each priority area (in km²), resulting in the following equation:

$$PC_{em} = \sum_{i=1}^{n} (S_i)^{GI}$$

Wherein:

 PC_{em} = priority of the marine ecoregion for conservation S_i = size of the priority area i, as defined by MMA (2010) - (km²) GI = value of the degree of importance of the priority area i

	LIFE-BR-TG01-3.2-English	Revision: 5/17/2018
carth	Applicability: Brazil	Version: 3.2
5	LIFE TECHNICAL GUIDE - 01	
	Calculation of the Biodiversity Impact Index and definition of	Page 31 of 42
	minimum performance in Conservation Actions	

5. Factors for Unit Conversation

a) Relations between Units

Exponential	Equivalence	Practical relations
(k) kilogram = 10^{3}	1 m ³ = 6.28981 barrels	
(M) mega = 10 ⁶	1 barrel = 0.158987 m ³	1 toe year = 7.2 boe year
(G) giga = 10 ⁹	1 joule = 0.239 cal	1 boe year = 0.14 toe year
(T) tera = 10 ¹²	1 Btu = 252 cal	1 toe year = 0.02 boe day
(P) peta = 10 ¹⁵	1 m ³ of oil = 0.872 t (in 1994)	1 boe day = 50 toe year
(E) exa = 10 ¹⁸	1 toe = 10,000 Mcal	

Source: 2013 National Energy Balance - Ministry of Mines and Energy

b) Coefficients of Caloric Equivalence

Multiplied by	to	(m³)	(1,000 m ³)	(t)	(m³)	(t)	(t)
from		Fuel oil	Dry natural gas	Mineral Coal 5,200	LPG	Firewoo d	Charcoa I
Mineral Coal 5,200	(t)	0.52	0.56	1.00	0.80	1.58	0.76
Charcoal	(t)	0.67	0.73	1.31	1.05	2.06	1.00
Dry natural gas	(1,000 m ³)	0.92	1.00	1.78	1.43	2.80	1.36
LPG	(m ³)	0.64	0.70	1.25	1.00	1.97	0.95
Firewood	(t)	0.33	0.36	0.63	0.51	1.00	0.49
Fuel oil	(m ³)	1.00	1.09	1.94	1.56	3.06	1.48

Source: 2013 National Energy Balance - Ministry of Mines and Energy

c) Conversion Factors for Mass

Multiplied by from	to	kg	t	tl	tc	lb
Kilogram	(kg)	1	0.001	0.000984	0.001102	2.2046
Metric Ton	(t)	1,000	1	0.984	1.1023	2,204.6
Long ton	(tl)	1,016	1.016	1	1.12	2,240
Short ton	(tc)	907.2	0.9072	0.893	1	2,000
Pound	(lb)	0.454	0.000454	0.000446	0.0005	1

Source: 2013 National Energy Balance - Ministry of Mines and Energy

LIFE-BR-TG01-3.2-English	Revision: 5/17/2018
Applicability: Brazil	Version: 3.2
LIFE TECHNICAL GUIDE - 01 the Biodiversity Impact Index and definition of m performance in Conservation Actions	Page 32 of 42

d) Conversion Factors for Volume

Multiplied by from	to	m³	I	gal (US)	gal (UK)	bbl	ft ³
Cubic meters	(m³)	1	1,000	264.2	220	6.289	35.3147
Liters	(I)	0.001	1	0.2642	0.22	0.0063	0.0353
Gallons	(US)	0.0038	3.785	1	0.8327	0.02381	0.1337
Gallons	(UK)	0.0045	4.546	1.201	1	0.02859	0.1605
Barrels	(bbl)	0.159	159	42	34.97	1	5.615
Cub feet	(feet ³)	0.0283	28.3	7.48	6.229	0.1781	1

Source: 2013 National Energy Balance - Ministry of Mines and Energy

e) Conversion Factors for Energy

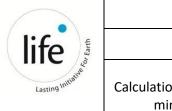
Multiplied by from	▶ to	J	BTU	cal	kWh
Joule	(L)	1	947.8 x 10⁻ ⁶	0.23884	277.7 x 10 ⁻⁹
British Thermal Unit	(BTU)	1.055 x 10 ³	1	252	293.07 x 10 ⁻⁶
Calorie	(cal)	4.1868	3.968 x 10 ⁻³	1	1.163 x 10 ⁻⁶
Kilowatt-hour	(kWh)	3.6 x 10 ⁶	3412	860 x 10 ³	1
Ton of oil equivalent	(toe)	41.87 x 10 ⁹	39.68 x 10 ⁶	10 x 10 ⁹	11.63 x 10 ³
Barrel of oil equivalent	(boe)	5.95 x 10 ⁹	5.63 x 10 ⁶	1.42 x 10 ⁹	1.65 x 10 ³

Source: 2013 National Energy Balance - Ministry of Mines and Energy

f) Mean Coefficients of Equivalence for Gaseous Fuels

Multiplied by to	giga- calorie	toe (10,000 kcal/kg)	boe	tec (7,000 kcal/kg)	giga- joule	million s BTU	megawatt- hour (860 kcal/kWh)
Piped gas Rio de Janeiro	3.8	0.38	2.68	0.543	15.91	15.08	4.42
Piped gas São Paulo	4.5	0.45	3.17	0.643	18.84	17.86	5.23
Coke oven gas	4.3	0.43	3.03	0.614	18.00	17.06	5.00
Dry natural gas	8.8	0.88	6.20	1.257	36.84	34.92	10.23
Humid natural gas	9.93	0.993	6.99	1.419	41.58	39.40	11.55

Source: 2013 National Energy Balance - Ministry of Mines and Energy



	LIFE-BR-TG01-3.2-English	Revision: 5/17/2018
r Earth	Applicability: Brazil	Version: 3.2
of e the	LIFE TECHNICAL GUIDE - 01	
(3-	Calculation of the Biodiversity Impact Index and definition of	Page 33 of 42
	minimum performance in Conservation Actions	

g) Mean Coefficients of Equivalence for Liquid Fuels

Multiplied by to	giga- calorie	toe (10,000 kcal/kg)	Boe	tec (7,000 kcal/kg)	giga- joule	millions BTU	megawatt- hour (860 kcal/kWh)
Anhydrous ethyl alcohol	5.34	0.534	3.76	0.763	22.35	21.19	6.21
Hydrated ethyl alcohol	5.01	0.510	3.59	0.728	21.34	20.22	5.93
Asphalts	10.18	1.018	7.17	1.455	42.63	40.40	11.84
Petroleum coke	8.73	0.873	6.15	1.247	36.53	34.62	10.15
Refinery gas	6.55	0.655	4.61	0.936	27.43	26.00	7.62
Automotive gasoline	7.70	0.770	5.42	1.099	32.22	30.54	8.95
Aviation gasoline	7.63	0.763	5.37	1.090	31.95	30.28	8.88
LPG	6.11	0.611	4.30	0.872	25.56	24.22	7.10
Agents, Lubrication	8.91	0.891	6.27	1.272	37.29	35.34	10.36
Naphtha	7.65	0.765	5.39	1.093	32.05	30.37	8.90
Fuel oil	9.59	0.959	6.75	1.370	40.15	38.05	11.15
Diesel Oil	8.48	0.848	5.97	1.212	35.52	33.66	9.87
Other petroleum based energy sources	8.90	0.890	6.27	1.271	37.25	35.30	10.35
Other non-petroleum based energy sources	8.90	0.890	6.27	1.271	37.25	35.30	10.35
Petroleum	8.90	0.890	6.27	1.271	37.25	35.30	10.35
Aviation kerosene	8.22	0.822	5.79	1.174	34.40	32.60	9.56
Illuminating kerosene	8.22	0.822	5.79	1.174	34.40	32.60	9.56
Solvents	7.81	0.781	5.50	1.115	32.69	30.98	9.08

Source: 2013 National Energy Balance - Ministry of Mines and Energy

LIFE-BR-TG01-3.2-English	Revision: 5/17/2018
Applicability: Brazil	Version: 3.2
LIFE TECHNICAL GUIDE - 01 Calculation of the Biodiversity Impact Index and definition of minimum performance in Conservation Actions	Page 34 of 42

h) Mean Coefficients of Equivalence for Solid Fuels

Multiplied by to from ton	giga- calorie	toe (10,000 kcal/kg)	boe	tec (7,000 kcal/kg)	giga- joule	millions BTU	megawatt- hour (860 kcal/kWh)
Tar	8.55	0.855	6.02	1.221	35.80	33.93	9.94
Sugarcane bagasse	2.13	0.213	1.50	0.304	8.92	8.45	2.48
Guarapa	0.62	0.062	0.44	0.089	2.61	2.47	0.72
Imported metallurgical coal	7.40	0.740	5.21	1.057	30.98	29.36	8.61
National metallurgical coal	6.42	0.642	4.52	0.917	26.88	25.47	7.47
Steam coal 3,100 kcal/kg	2.95	0.295	2.08	0.421	12.35	11.70	3.43
Steam coal 3,300 kcal/kg	3.10	0.310	2.18	0.443	12.98	12.30	3.61
Steam coal 3,700 kcal/kg	3.50	0.350	2.46	0.500	14.65	13.89	4.07
Steam coal 4,200 kcal/kg	4.00	0.400	2.82	0.571	16.75	15.87	4.65
Steam coal 4,500 kcal/kg	4.25	0.425	2.99	0.607	17.79	16.86	4.94
Steam coal 4,700 kcal/kg	4.45	0.445	3.13	0.636	18.63	17.66	5.18
Steam coal 5,900 kcal/kg	5.60	0.560	3.94	0.800	23.45	22.22	6.51
Steam coal 6,000 kcal/kg	5.70	0.570	4.01	0.814	23.86	22.62	6.63
Unspecified steam coal	2.85	0.285	2.01	0.407	11.93	11.31	3.31
Steam coal 5,200 kcal/kg	4.90	0.490	3.45	0.700	20.52	19.44	5.70
Charcoal	6.46	0.646	4.55	0.923	27.05	25.63	7.51
Mineral coal coke	6.90	0.690	4.86	0.986	28.89	27.38	8.02
Firewood	3.10	0.310	2.18	0.443	12.98	12.30	3.61
Lye	2.86	0.286	2.01	0.409	11.97	11.35	3.33
Molasses	1.85	0.185	1.30	0.264	7.75	7.34	2.15

Source: 2013 National Energy Balance - Ministry of Mines and Energy

i) Densities and Calorific Values – 2012

Energetic	Density kg/m ^{3 (1)}	Higher calorific value kcal/kg	Inferior calorific value kcal/kg
Tar	1,000	9,000	8,550
Anhydrous ethyl alcohol	791	7,090	6,750
Hydrated ethyl alcohol	809	6,650	6,300
Asphalts	1,025	10,500	9,790
Sugarcane bagasse ¹	130	2,257	2,130
Biodiesel (B100)	880	9,345	9,000
Sugarcane juice	-	623	620

		LIFE-BR-TG01-3.2-E	inglish	Revision: 5/17/2018
life June 1		Applicability: Br	azil	Version: 3.2
Lasting Initiative	Calculation of	LIFE TECHNICAL GUI the Biodiversity Imp m performance in Co	act Index and definition of	Page 35 of 42
Energ	etic	Density kg/m ^{3 (1)}	Higher calorific value kcal/kg	Inferior calorific value kcal/kg
Imported metallu	irgical coal	-	7,700	7,400
National metallur	rgical coal	-	6,800	6,420
Steam coal 3,100	kcal/kg	-	3,100	2,950
Steam coal 3,300	kcal/kg	-	3,300	3,100
Steam coal 3,700	kcal/kg	-	3,700	3,500
Steam coal 4,200	kcal/kg	-	4,200	4,000
Steam coal 4,500	kcal/kg	-	4,500	4,250
Steam coal 4,700	kcal/kg	-	4,700	4,450
Steam coal 5,200	kcal/kg	-	5,200	4,900
Steam coal 5,900	kcal/kg	-	5,900	5,600
Steam coal 6,000	kcal/kg	-	6,000	5,700
Unspecified stear	n coal	-	3,000	2,850
Charcoal		250	6,800	6,460
Mineral coal coke	5	600	7,300	6,900
Petroleum coke		1,040	8,500	8,390
Electricity ²		-	860	860
Hydraulic Power	2	1,000	860	860
Piped gas Rio de .	Janeiro ³	-	3,900	3,800
Piped gas São Pau	ulo ³	-	4,700	4,500
Coke oven gas ³		-	4,500	4,300
Refinery gas		0.780	8,800	8,400
Liquefied Petrole	um Gas	552	11,750	11,100
Dry natural gas ^{3,4}	4	0.740	9,256	8,800
Humid natural ga	s ^{3,4}	0.740	10,454	9,930
Automotive gaso	line	742	11,220	10,400
Aviation gasoline		726	11,290	10,600
Gathered firewoo	bd	300	3,300	3,100
Commercial firew	vood	390	3,300	3,100
Lye		1090	3,030	2,860
Agents, Lubricatio	on	875	10,770	10,120
Molasses		1,420	1,930	1,850
Naphtha		702	11,320	10,630
Fuel oil		1,000	10,085	9,590
Diesel Oil		840	10,750	10,100
Other petroleum sources	based energy	864	10,800	10,200
Other non-petrol	eum based	864	10,800	10,200

		LIFE-BR-TG01-3.2-E	nglish	Revision: 5/17/2018
life		Applicability: Bra	Version: 3.2	
Lasting Infrastree's	Calculation of minimu	LIFE TECHNICAL GUI the Biodiversity Impa m performance in Cc	Page 36 of 42	
		Devester	112 - 12 - 23 - 21 - 2 12 - 21 - 2	
Enor	antic	Density	Higher calorific value	Inferior calorific value
Ener	getic	bensity kg/m ^{3 (1)}	Higher calorific value kcal/kg	kcal/kg
Ener Petroleum	getic		-	
		kg/m ^{3 (1)}	kcal/kg	kcal/kg
Petroleum	ne	kg/m ^{3 (1)} 884	kcal/kg 10,800	kcal/kg 10,190

Source: 2013 National Energy Balance - Ministry of Mines and Energy

1 Bagasse with 50% humidity

2 kcal/kWh

3 kcal/m³

4 At a temperature of 20 $^\circ\text{C},\,$ for derivatives of petroleum and natural gas

j) Conversion Factors for mean toe

Energy Source	Unit	toe
Tar	m ³	0.855
Anhydrous ethyl alcohol	m ³	0.534
Hydrated ethyl alcohol	m ³	0.510
Asphalts	m ³	1.018
Sugarcane bagasse	Т	0.213
Biodiesel (B100)	m ³	-
Guarapa	Т	0.062
Imported metallurgical coal	Т	0.740
National metallurgical coal	Т	0.642
Steam coal 3,100 kcal/kg	Т	0.295
Steam coal 3,300 kcal/kg	Т	0.310
Steam coal 3,700 kcal/kg	Т	0.350
Steam coal 4,200 kcal/kg	Т	0.400
Steam coal 4,500 kcal/kg	Т	0.425
Steam coal 4,700 kcal/kg	Т	0.445
Steam coal 5,200 kcal/kg	Т	0.490
Steam coal 5,900 kcal/kg	Т	0.560
Steam coal 6,000 kcal/kg	Т	0.570
Unspecified steam coal	Т	0.285
Charcoal	Т	0.646
Mineral coal coke	Т	0.690
Petroleum coke	m ³	0.873
Electricity	MWh	0.086
Piped gas Rio de Janeiro	10 ³ m ³	0.880
Piped gas São Paulo	10 ³ m ³	0.450

LIFE-BR-TG01-3.2-English	Revision: 5/17/2018		
Applicability: Brazil	Version: 3.2		
		ion of	Page 37 of 42
Energy Source	Unit	toe	
Coke oven gas	10 ³ m ³	0.430	
Refinery gas	10 ³ m ³	0.655	
Liquefied petroleum gas	m³	0.611	
Dry natural gas	10 ³ m ³	0.880	
Humid natural gas	10 ³ m ³	0.993	
Automotive gasoline	m ³	0.770	
Aviation gasoline	m³	0.763	
Hydraulic	MWh	0.086	
Commercial firewood	Т	0.310	
Lye	Т	0.286	
Agents, Lubrication	m³	0.891	
Molasses	Т	0.185	
Naphtha	m³	0.765	
Fuel oil (medium)	m ³	0.959	
Diesel Oil	m ³	0.848	
Other non-renewable	Тое	1.000	
Other renewable	Тое	1.000	
Other petroleum based energy sources	m³	0.890	
Other non-petroleum based energy sources	m ³	0.890	
Petroleum	m ³	0.891	1
Aviation kerosene	m³	0.822	1
Illuminating kerosene	m³	0.822	1
Solvents	m ³	0.781	1
Uranium contained in UO ₂	Kg	73.908	1
Uranium U ₃ O ₈	Kg	10.139	1
	Applicability: Brazil LIFE TECHNICAL GUIDE - 01 Calculation of the Biodiversity Impact Index minimum performance in Conservation Energy Source Coke oven gas Refinery gas Liquefied petroleum gas Dry natural gas Humid natural gas Automotive gasoline Aviation gasoline Hydraulic Commercial firewood Lye Agents, Lubrication Molasses Naphtha Fuel oil (medium) Diesel Oil Other non-renewable Other non-petroleum based energy sources Petroleum Aviation kerosene Illuminating kerosene Solvents Uranium U ₃ O ₈	Applicability: Brazil LIFE TECHNICAL GUIDE - 01 Calculation of the Biodiversity Impact Index and definite minimum performance in Conservation Actions Energy Source Unit Coke oven gas 10 ³ m ³ Refinery gas 10 ³ m ³ Liquefied petroleum gas m ³ Dry natural gas 10 ³ m ³ Humid natural gas 10 ³ m ³ Automotive gasoline m ³ Aviation gasoline m ³ Hydraulic MWh Commercial firewood T Lye T Agents, Lubrication m ³ Molasses T Naphtha m ³ Diesel Oil m ³ Other non-renewable Toe Other renewable Toe Other non-petroleum based energy sources m ³ Aviation kerosene m ³ Aviation kerosene m ³ Other sources m ³ Other non-petroleum based energy sources m ³ Other non-petroleum based energy sources m ³ Other non-petroleum based energy sources	Applicability: Brazil LIFE TECHNICAL GUIDE - 01 Calculation of the Biodiversity Impact Index and definition of minimum performance in Conservation Actions Energy Source Unit toe Coke oven gas 10 ³ m ³ 0.430 Refinery gas 10 ³ m ³ 0.655 Liquefied petroleum gas m ³ 0.611 Dry natural gas 10 ³ m ³ 0.880 Humid natural gas 10 ³ m ³ 0.993 Automotive gasoline m ³ 0.763 Hydraulic MWh 0.086 Commercial firewood T 0.310 Lye T 0.286 Agents, Lubrication m ³ 0.763 Molasses T 0.185 Naphtha m ³ 0.793 Other non-renewable Toe 1.000 Other non-renewable Toe 1.000 Other non-petroleum based energy sources m ³ 0.890 Other non-petroleum based energy m ³ 0.890 Other non-petroleum based energy m ³ 0

Source: 2015 National Energy Balance - Ministry of Mines and Energy

	LIFE-BR-TG01-3.2-English	Revision: 5/17/2018
life	Applicability: Brazil	Version: 3.2
Lasting Initiative	LIFE TECHNICAL GUIDE - 01 Calculation of the Biodiversity Impact Index and definition of	Page 38 of 42
	minimum performance in Conservation Actions	

6. Scopes Brazilian GHG Protocol Program

Sector	Emission Source Scope 1	Emission Source Scope 2	Emission Source Scope 3
		Energy	
Generation of	 Stationary combustion (boilers and turbines used in the production of energy, heat, or steam; fuel pumps; fuel cells; burning of discarded gases or flaring) Mobile combustion (trucks, vessels, and trains for transporting fuels) 	consumption, heat or steam acquired)	 Stationary combustion (mining and extraction of fuels, energy for refining and processing of fuels)
Energy	• Fugitive emissions (CH ₄ leak from transmission and from storage installations; HFC emissions from storage installations; SF ₆ emissions from transmission and distribution equipment)		 Process emissions (productions of fuels, SF₆ emissions) Mobile combustion (transport of fuels / waste, business trips, employee commuting to-from work) Fugitive emissions (CH₄ and CO₂ from landfills, pipelines, SF₆ emissions)
Oil & Gas	 Stationary combustion (process heaters, motors, turbines, burning of discarded gases or flaring, incinerators, oxidants, production of electricity, heat, and steam) Process emissions (process vents, equipment vents, routine and maintenance activities, non-routine activities) Mobile combustion (transport of raw materials, products, waste; vehicles belonging to the company) 	consumption, heat or steam acquired)	 Stationary combustion (use of products as fuel or combustion for the production of acquired materials) Mobile combustion (transport of raw materials, products, and waste; employees' business trips; employee commuting to-from work; use of products as fuel) Process emissions (use of product as raw material or emissions resulting from the production of acquired materials) Fugitive emissions (CH₄ and CO₂ from landfills or from the production of acquired materials)

	LIFE-BR-TG01-3.2-English	Revision: 5/17/2018
life	Applicability: Brazil	Version: 3.2
Lasting Initiative	LIFE TECHNICAL GUIDE - 01 Calculation of the Biodiversity Impact Index and definition of	Page 39 of 42
Lasting	minimum performance in Conservation Actions	1 uge 35 01 42

Sector	Emission Source Scope 1 Emission Source Scope 2		Emission Source Scope 3
	Fugitive emissions (leaks from pressurized		
	equipment, sewage treatment, dams)		
	• Stationary combustion (flaring and use of methane,	Stationary combustion (energy	 Stationary combustion (use of product as fuel)
	use of explosives, fires in mines)	consumption, heat or steam	• Mobile combustion (transport of coal or waste,
Coal Mining	• Mobile combustion (mining equipment, transport of	acquired)	employees' business trips, employee commuting to-from
	coal)		work)
	• Fugitive emissions (CH ₄ emissions from coal mines		 Process emissions (gasification)
	and coal deposits)		
		Metals	
	• Stationary combustion (processing of bauxite into	• Stationary combustion (energy	• Stationary combustion (processing of raw materials and
	aluminum; coke baking; use of lime; sodium carbonate	consumption, heat or steam	production of coke by third parties, manufacture of
	and fuel; CHP)	acquired)	machinery for the production line)
	• Process emissions (anodic oxidation, electrolysis,		• Mobile combustion (transport services, business trips,
Aluminum	PFC)		employee's trips)
	• Mobile combustion (transport pre-and post-casting		• Process emissions (during the production of acquired
	smelting, ore trucks)		materials)
	• Fugitive emissions (CH ₄ , HFC and PFC from fuel		\bullet Fugitive emissions (CH_4 and CO_2 from mining and
	pipes, SF ₆ as blanket gas)		landfills, emissions from outsourced processes)
	• Stationary combustion (flows of coke, coal, and	• Stationary combustion (energy	• Stationary combustion (mining equipment, production
	carbonate; boilers; burners)	consumption, heat or steam	of acquired materials)
	• Process emissions (oxidation of pig-iron,	acquired)	 Process emissions (production of ferroalloys)
Iron and steel	consumption of reducing agent, carbon content of pig-		• Mobile combustion (transport of raw materials,
	iron and ferroalloys)		products, waste and intermediary products)
	Mobile combustion (on-site transport)		• Fugitive emissions (CH ₄ and CO ₂ from sanitary landfills)
	• Fugitive emissions (CH ₄ , N ₂ O)		

			LIFE-BR-TG01-3.2-E	inglish		Revision: 5/17/2018	
	life		Applicability: Bra	azil		Version: 3.2	
	Lasting initiative	Calculation of t	IFE TECHNICAL GUI he Biodiversity Impa n performance in Co	act Index and		Page 40 of 42	
Sector	Emission Source Scope	21	Emission Source	e Scope 2		Emission Source Scope 3	
			Chemicals				
Nitric acid, ammonia, adipic acid, urea, petrochemicals	 Stationary combustion (boilers, b furnaces, flame reactors, steam reform Process emissions (oxidation of substrates, removal of impurities, N catalytic cracking, and several of emissions from each process) Mobile combustion (transport of products and waste) Fugitive emissions (use of HFC storage tanks) 	mers) or reduction of N ₂ O by-products, other individual f raw materials,	consumption, heat	ustion (energy t or steam	 materials, was Process em Mobile co products and to-from work) 	ŭ	d materials) aw materials, yee commuting
			Minerals		1		
Cement and lime	 Process emissions (calcination of line Stationary combustion (clinker over materials, energy production) Mobile combustion (quarry oper transport) 	er, drying of raw	• Stationary combu consumption, heat acquired)		lime) • Mobile co		aw materials,
Waste							
Landfills, waste combustion,	 Stationary combustion (incine burners) Process emissions (sewage treat 	erators, boilers, atment, nitrogen	consumption, heat			combustion (recycled waste us missions (recycled waste	

			LIFE-BR-TG01-3.2-English		Revision: 5/17/2018	
	life		Applicability: Brazil		Version: 3.2	
	Lasting Initiative	Calculation of t	LIFE TECHNICAL GUIDE - 01 he Biodiversity Impact Index and m performance in Conservation A		Page 41 of 42	
Sector	Emission Source Scope	e 1	Emission Source Scope 2		Emission Source Scope 3	
	 the decomposition of waste and anim Mobile combustion (transport products) 					
			Pulp & Paper			
Pulp & Paper	 Stationary combustion (production energy, emissions derived from fossionation of calcium carbonate in literation of products using infrared dryers products. Mobile combustion (transport comproducts, and waste; operation equipment) Fugitive emissions (CH₄ and CO₂ from the composition of the co	sil fuels from the me ovens, drying owered by fossil of raw materials, of harvesting	consumption, heat or steam	 Mobile co products, and to-from work) 		aterials) materials, commuting
		Productior	of HFC, PFC, SF ₆ and HCFC-22			
Production of HCFC-22	 Stationary combustion (energy coordinates of the state of the	IFC)	• Stationary combustion (energy consumption, heat or steam acquired)	 Process em Mobile co products and to-from work) 	issions (production of acquired m ombustion (transport of raw waste; business trips, employee nissions (leakages in the use of tl	aterials) materials, commuting
		Produ	iction of Semiconductors			
Production of Semiconductors	• Process emissions ((C_2F_6 , CH_4 , CH_4) C_4F_8 , N_2O used in the fabrication				combustion (production of hbustion of waste, losses in T&E	•

	LIFE-BR-TG01-3.2-English	Revision: 5/17/2018
life	Applicability: Brazil	Version: 3.2
and the state	LIFE TECHNICAL GUIDE - 01	
Lasting Initiation	Calculation of the Biodiversity Impact Index and definition of	Page 42 of 42
	minimum performance in Conservation Actions	

Sector	Emission Source Scope 1	Emission Source Scope 2	Emission Source Scope 3
	created from the processing of C_2F_6 and C_3F_8)	steam acquired)	acquired higher in the value chain)
	• Stationary combustion (oxidation of volatile organic		• Process emissions (production of acquired materials,
	waste; production of energy, heat, or steam)		outsourced elimination of gases from processes and
	• Fugitive emissions (leakages in the storage of		remnants from storage tanks)
	process gases, leakages of remnants from storage		 Mobile combustion (transport of raw materials,
	tanks)		products and waste; business trips, employee commuting
	Mobile combustion (transport of raw materials,		to-from work)
	products and waste)		$\bullet~$ Fugitive emissions (emissions of CH_4 and CO_2 from
			landfills, leakages of remnants in storage tanks of process
			gases lower in the value chain).
		Other Sectors	
	• Stationary combustion (production of energy, heat	• Stationary combustion (energy	 Stationary combustion (production of acquired
Sector of services /	or steam)	consumption, heat or steam	materials)
organizations with	Mobile combustion (transport of raw materials or	acquired)	 Process emissions (production of acquired materials)
activities	waste)		 Mobile combustion (transport of raw materials,
performed in	• Fugitive emissions (mainly emissions of HFC during		products and waste; business trips, employee commuting
offices	the use of refrigeration and air-conditioning		to-from work)
	equipment)		

Source: Specifications of the Brazilian GHG Protocol Program – 2nd Edition.